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The process of t rans i t ion  t o  shock-wave detachment fo r  a f i n i t e  

An asymptotic analysis i n  wehge i n  a uniform stream is reexamined. 

a transformed physical plane yields closed-form solutions valid i n  a 

neighborhood of the wedge vertex. 

f a c i l i t a t e  the  application of boundary conditions, and should be use- 

ful i n  the  analogous problem for a cop,e. 

obtained which verify t h e  conclusions of C-uiierley's 'nodograph analysis. 

The transformed coordinates 

Quantitative resu l t s  are 

J 
I 



1. INTRODUCTIOX 

I n  the  classical  solution fo r  an i n f in i t e  wedge placed i n  a steady, 

supersonic, uniform stream, it is  w e l l  known that f o r  suff ic ient ly  small 

wedge vertex angles 8, a straight oblique shock wave is attached at  the  

vertex. The flow pro2erties a re  constant between the shock wave and the  

wedge surface, and are determined by the jump conditions across the shock 

and f l o w  tangency at the surface. 

For given conditions i n  the uniform stream ahead of the wedge, there 

is a maximum vertex angle, 

f i o n t h e  vertex, and the simple solution no longer exis ts .  

8d, beyond which the shock wave is  detached 

For a l l  but 

a limited range of wedge engles smaller than ad, the  flow i n  the "shock 

layer" is supersonic; hovever, there ex is t s  a vertex angle 

such that the flow in the shock layer is smicz and attached-shock, sub- 

Os, 8, < 8d, - 

sonic flow occurs i n  the range of axles  8, < 0 C Ud. 

In  a pract ical  problem t h e  wedge is, of course, f i n i t e  i n  i t s  extent 

downstream, and the classical  i n f i n i t e  wedge solution is not valid in 

t he  large. In  t h e  range os < a < ad, where the shock-layer flow i s  sub- 

sonic, the governing gas dynamic equations are of e l l i p t i c  type; 8 change 

i n  the  downstream boundary condition, expressing a departure f ramthe  

~ i - # & . v ~ . : - c o n t o u r ,  can influence the en t i r e  solution. 

the c lass ica l  solution occurs only at the vertex, while the  shock wave 

In  this case, 
_ _  . ~ 

t 

i s  generally curved and the flow properties are not constant away from 

the  t i p .  



Guderley (1947) studied the f i n i t e  wedge, where he formulated a 

boundary problem for  a simplified form of Chaplygin's equation fo r  the 

s t r e p  function ia the hodograph (velocity) plane. 

he discussed qualitatively the  process of t rans i t ion  from attached-shock, 

supersonic flow t o  detached-shock, mixed ( subsonic-supersonic) f l o w .  

I n  h i s  analysis, 

In 

prt i cu la r  , he c la r i f ied  the significance of "Crocco 's point, " a cer tain 

point on the shock polar diagram which corresponds t o  a change i n  sign 

of the  streamlirie curvature behind a curved shock wave (Ferri ,  1954). 

The wedge angle corresponding t o  Crocco's point, e,, l i e s  within the 

subsoaic-flow range, 

i n  the flow a t  tUs point cau~cd Crocco (1937) t o  suspect that the shock 

8, < 8, < 8d; the  indication of vlolent changes 

?ere rather than at the la rger  wedge angle, 8d. 

Guderley's anabsis showed the  conjecture t o  be false. H e  demonstrated 

thzt 2s the  wedge angle i s  increased from 8, t o  @d, the shock curva- 

L u r e  at the vertex is  zero fo r  

8 = 8,; and f ina l ly  inf in i te ,  but s t i l l  attached, fo r  

0 C 8,; then nonzero, but finite, at  

8, < 3 < 8d. 

A phenoaenon siniiar to the Crocco-point behavior occurs i n  the 

classical solution f o r  supersonic axisyminetric flow past a circular  cone, 

but the governing equations pec lude  a closed-form analysis (Shen & Lin, 

1951). 

cC;cicd. surface with vertex at the cone t i p ,  and flow properties are 

constant along any intermediate conical surface; but the solution can be 

obtained only by numerical integration of a nonlinear, two-point boundary 

pro5lenn (%qa.l, 1947). 

In the basic infirdte-cone problem, the shock wave is  i tself  a 

The f inal  analysis of detachment t rans i t ion  is  
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not smenzble t o  treatment i n  the hodograph plane; analysis i n  the  

nhjs ical  plane, o r  e minor t r m s f o m t i o n  thereof, w i l l  l i ke ly  be more 

s t m i z 3 f o r m r d .  An asym2totic expansion at the cone vertex sceols 

proinisiw, and has already been used t o  obtain the r a t i o  of t h e  shock- 

wave and body curvatures at the t i p  of an ogive of revolution (Shen &. Lin, 

1951; Cabannes, 19.51). 

The present paper demonstrates that analysis o f t h e  wedge problem 

can*be carried out i n  the  physical plane i n  a straightforward manner 

with quantitative results;  that Guderley’s conclusions can be reached 

without resor t  t o  the hodograph treatment. An interesting and t ractable  

eigenvalue -problem i s  f o m d a t e d  whose closed-form solution offers a 

detailed picture of the beh2vior o f t h e  flow near the wedge vertex as 
_ ”  

t rans i t ion  t o  shock detachment occurs. The asymptotic technique which 

the basic infinite-cone solution 

2, AXALYSIS 

The flow geometry and coordinates a re  i l l u s t r a t ed  in figure 1. 

A body-oriented coordinate system is  used with the x and y coordimtes 

along and n o d  t o  the wedge surface, and with origin at the  vertex. The 

basic equations are as follows: 

Continuity 

x-momentun 
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y-mcnentum av av u,+vz+;;F 

The four unhown m c t i o n s  i n  equations (1) t o  (4) a re  u and v, the  

x and y conponents of velocity; and p and p, the s t a t i c  pressure 

and density. 7 is the r a t io  of specific heats of the gas. 

We w i l l  seek a loca l  solution valid i n  a neighborhood of the wedge 

y = 6 ( x ) ,  the  usual shock-wave vertex such that along the  shock wave, 

re la t ions (e.&, see South, 1964) a re  sat isf ied,  and along the  wedge 

su-face, y = 0, the y -  component of velocity vanishes; that is, 

v(x,o) = 0. 

Transformation of coordinates I 

n- -L--3-- L.l-- 3 7  -_-  
A U  a t , ~ ~  hue AAUW Lii ti i i e i g i b v i b d  uf Lhe weilge verbex, it is 

convenient. t o  introduce a transformtion which maps the shock layer 

into an open rectangular region. The coordinates E; and q are  

introduced so that 

e = x, tl = y/6(x) 

where 

d6 
- - t a n h  
dx 

(3) 

and A = p - a, the angle between the tangent t o  the shock wave and the 

wedge s-a-Tace. Then the shock wave corresponds t o  the  l i n e  7 = 1 and 
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the wedge surface i s  the S-axis, q = 0 (f ig .  2 ) .  Whereas i n  the 

or iginal  coordinates, t h e  flow a t  the  wedge vertex occurs at  the  point 

x = 0, 

0 q 5 1. AfXer eliminating derivatives of p from equation (1) by 

using equations (2) t o  (4),  the  transformation of equations (1) t o  ( 3 )  

yields 

y a 0, it i s  now "stretched out" along the  y-axis, 5 = 0, 

1- 
0 uv 1 ap 

aq P aq 
I-- 
V V  + (v - uq t a n  A )  - + - - = 

The boundary conditions are 

V(k,O) = 0 

( 9 )  

where f represents a.ny of the unknown functions u, v, p, or  p, and 

the  par t icular  form f o r  F 

M, 

is given by the usual shock-mve relations. 

is  the  stream Mach number ahead of the wedge. 
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6 

Asymptotic expansions 

From physical considerations we e q e c t  a solution which coincides 

E = 0; and such tha t  with the  infinite-wedge solution at the vertex, 

t he  flow variables i n  a n'eighbor'nood of the t i p  are continuous, but 

may have in f in i t e  derivatives. Preliminary study of the equations (6) 

t o  ( 8 ) ,  together with the condition that the shock is  attached at  the 

vertex, 

xbc t ions  of the form 

6(0) = 0, leads us to an asymptotic expansion f o r  the unknown 

i 

where the exponent a is  positive. (The symbol - will be used t o  

denote equality t o  the lowest order i n  4 indicated.) That  form of 

solution is  indeed found t o  be canpatible with equations (7) t o  (8 ) ,  

kdth 

A f t e r  substi tution of the e w s i o n s  (12) and (13) in to  equ t ions  (7) 

t o  (8) and equating coefficients of l i k e  powers of 

that the zeroth-order functions fo( 7)  comprise the classical inf ini te-  

wedge solution, provided tht a > 0. 

functions fo(q) are constant functions, where 

5 ,  it can be verified 

It should be emphasized that the 
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a d  i n  par t icular  

The first-order f’unctions f i ( q )  arc found t o  satisfy the following 

systen, vhere primes &note differentia-bion With respect t o  7: 

It is  seen that the eqonent CL enters i n to  tke systen as 2 _yammeter; 

lzter it w i l l  beccd  c lear  tht in ths  subsonic-flow rmge 02 vertex 

angles, 8, < 0 < 8d, a. is an eigenvalue uniquely determined by the  

uniform stream conditions and the vertex angle 

boundary conditions at  the shock wave, equation (U), it is necessary 

that 

8. To satis13 the  
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a d  from equations (11) and (14), 

Then the  boundary conditions fo r  equations (16) t o  (18) are 

$0)  = 0 

alzd 

8FO 
B 1  f J l )  = - as 

where, as mentioned before, i?l represents any of the f'unctions ul, 

q, etc., and aE'o/aP is the  corr?spoaiLing &derivative of the  

e a r e s s i o n  f o r  the  zeroth-order i b C t i G 2  rt the shock have (cf.  eq. (14)). 

S olut ic.2 

The term (oxl - qui) i s  easily e l h i n a i e d  by ccabizLq equations (16) 

and (17) t o  yield 

where Jb 

equatiolzs (18) and (23) are differentiated once again w i t h  respect t o  

i s  the flow Vach number at the wedge vertex, 

q, 

the function pl and i t s  derivatives can be eliminated, with the  resul t  
A2 
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. where 

It should be noted that i n  the subsonic-flow range of wedge cngles, 

8, < 8 < 8d, 140 < 1, and Co is real; whereas i n  the  supersonic range, 

0 < 8 < e,, 1.f~) > 1, and Co is  pure im3ginwy. The case CO = 0, 

where rYb = 1, w i l l  be treated separately. 

' For Co f 0, eQuatioa (24) i s  simplified by the substitution 5 = COT. 

Thea, 

The bmiiary con&itions i n  terns of the riew foriepen&ent variable ( ere: 

at 5 = CO (i.e., '1 = 1) 

i3Gmtion (26) is recognized to be a Q$z-rGecxetric equation whose gefieral 

solution can be written in te rns  02 eleaentary flmctions: 

where 

g(0 = (1 + ir)" - (1 - ioa 
h ( t )  = (1 $. i t)" + (1 - i c ) a  

and A and 3 are Grbitrary constants. 
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The variable 

P?? < 1 or  ;"I > 1, respectively. I n  the  l a t t e r  (supersonic shock-layer) 

case, 50th functions g ( < )  w-d h(() are real-valued; and when 1% < 1, 

h(5) is  again r ea l  while g ( ( )  is pure i-:3&xny. In  e i ther  case, the 

general solution (29)  is, of couse, real-valued. A convenient form for 

a ( ( )  and h(() when MO < 1 is: 

f is  eAther r e a l  o r  pure haginary  depending on whether 

where 

or  i n  term of the  ori@.miL varia52.e 7, 

where 



and 

It w i l l  be seen lcter tha t  the t e r n  

the  eigenvelue problem. 
Cl is of special  Fnportance t o  

where 
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n y -  i r i e  solution fo r  pl (7 )  can be obtained d i rec t ly  f ro3  the appopr ia te  

eqans ion  of the Bernoulli - equation (4) , hence 

E q a t i o z s  (34), ( 3 6 ) ,  (39), ard (41) c o q l e t e  the  f i rs t -order  solction 

i n  te rns  of the 9arascter Bi, the e2Sczit-Aue a, and the  zeroth-order 

i n f i n i t e  wedge solution. The pzrmeter B1 is  a scale p a m e t e r  whose 

ro le  i n  the  solution will be clar i f ied.  

%C- = c 
A -  

The wio. s posszoi l i t ies  are trsated sewratcly as follows: 

(c) Supersonic f l G - r ,  1 4 ~  > 1. ( E ~  = 0) - I n  the  case of a supersonic 

sZc& layer,  equation (43) cannot be sctisfied. Recall that CO is pure 

~ . ~ $ m r y  fo r  Y ?  > 1, w h i l e  the Fur,ctions H(1) and G(1) are real. 

2.~%'ne r , 



It can be rezdily shoLm frm tl-c obliyJe shock relations that  

I2 equation (38)  i s  ciivided by the prodwt pa$ (p, and V, are 

the mdfsturbed stream density and velocity), and the oblique shock 

x h t i o n s  are a?plied, then 

<- by ?trtw o l  ega-LLon (46). The conclusion 

tkt the first-order I b c t i o a s  Ti a-s 2l.l ident ical ly  zero. The 

i n t e q r e t c t i o n  of t h i s  result is t'mt the zeroth-order bnfinite-treQe J 

solution prevails thrmqhout the  i'low t o  at least a value 5 where the 

wedge contour de-rts frm i t s  origins1 straight l h e .  Tnis feature is, 

or' course, w e l l  bown frm other considerztions, such as the 'werbo l i c  

ckaracter o f t h e  Full equations for 1% > 1. That is, there is no 

11"- ,zeCozck" of dd;mstrem disturbames in a locally supersonic flow. 
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phgsical rensocbAg a d  the el l i$ic  na tvx  of t h e  f'd.3. eqxitions fo r  

< 1 s q z e s t  that the first-orZar ; o h t i o n  is nmtrivid, .  

is the  eigenvalu? ~rliich is detemii1ed by t h e  requirement tha t  

In  fact, 

a, 

variisk~s, equation (43). Is?ien ~k < 1 CO is real, and equations (31) 

acd ( 3 2 )  are used. Beme, 

Cl 

- ? 

1 - - - -f co t  cLf6(co) H ( 1 )  
iCoG(  1) 

(47) 

whcre 

If n a i t r i v i d  soluiions fo r  the f i r s t -onkr  fwxtions a re  t o  be obteined, 

that is I31 f 0, then caparison of equztions (43) and (47) shows t ha t  ct 

a =  (49) 

1,Gzen the  o5licpe shock exgressions are tigain imerted, eqmtion (49) czn  

&so be written QS 



t .  .. . 

-r l  mexinat ion 02 eya%io;ls (49) cr?d ( S O )  r c ~ c a l s  the fonoving:  

sa'bscnkc in te rva l ,  I S  tkc ?;edge cr.z1? ir-creases from 3, t o  ed, 
In  the 

c. 6ecrecs:; frc:~ +co to G. FW d,- > . ' b <  . yrT ti,, a, > OL 2 1;  or 

Cc < B ed, > a t  0. %sac i'cati;Tt; can bc observed by noting: 

(1) As CO 40, u 3 m  

( 2 )  At Crocco's poi;?t, the s-wearillinc curvature behizd a 

c a n e d  shock wave clhmgcs sign. 

p q e  683 of Ferri, 1934, and also eq. (C-15), Ap;?endix C of Solrth, 1964) 

in term of the present notation that the folfowiw relat ion holds: 

It caa 'x shovn (see  eq. (4-39), 

7*urtk-,er mnipulat ion yields a quadratic equation i n  t m  gd, thus 



.. 
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-_ '~*r_a local  soictioa cannot, of course, 

f'initm and diffzrcn% fro= zero, L L ~  31 is thus proportioazl %o the 

( C )  S O l l z C  f l G V 9  !vb = 1. - ';he sonic cozdition, hjo = 1, is the 

diviGing poi:-6 batwen the e l l i p t i c  %id FOTcrbolic c?..rrcter of the Rill 

eqcatiozrs ar;d t h e i r  required bomsary cozdikions. Essentizlly the sage 
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r c sd t s  erc obtziczd whether the  ccnCi-Lion is rpprosched from the 

s 1 z b ~ 0 - i ~  range or the supersonic rznGe. That is, in the subsonic-to- 

Pressare beh.l;,cr :iem t k e  vertex 

In an experixmtd. inwstigertioil of sugersonic flosr over a wedge, 
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